Лекция 4. Слабая, *—слабая и сильная сходимости.

Корпусов Максим Олегович, Панин Александр Анатольевич
Курс лекций по нелинейному функциональному анализу
14 марта 2012 г.

Итак, напомним, что действие линейного функционала $f \in X^*$ на элементе некоторого линейного пространства $u \in X$ мы обозначаем как

$$\langle f, x \rangle : X^* \times X \to \mathbb{R}^1.$$

Пусть \mathbb{B} — это нормированное пространство с нормой $\|\cdot\|$, с сопряженным \mathbb{B}^* и скобками двойственности $\langle\cdot,\cdot\rangle$. Дадим определение сильной сходимости.

Определение 1. Сильной сходимостью последовательности $\{u_n\}$ в банаховом пространстве $\mathbb B$ к некоторому элементу $u\in \mathbb B$ называется сходимость по норме следующей числовой последовательности:

$$\|u_n-u\| o 0$$
 при $n o +\infty$ для некоторого $u\in \mathbb{B}.$ (1)

Норма сопряженного пространства \mathbb{B}^* вводится как

$$||f||_* \equiv \sup_{\|u\|=1} |\langle f, u \rangle|. \tag{2}$$

Даже если исходное нормированное пространство X не является полным, его сопряженное пространство X^* полно относительно нормы (2). Это следствие теоремы Банаха–Штейнгауза.

Справедлива следующая полезная лемма:

Лемма

Пусть $u \in \mathbb{B}$ и $f \in \mathbb{B}^*$, тогда имеет место следующее неравенство

$$|\langle f, u \rangle| \leqslant ||f||_* ||u||. \tag{3}$$

Перейдем теперь к понятию слабой сходимости последовательностей банахова пространства $\mathbb B$. Дадим следующее определение.

Определение 2. Последовательность $\{u_n\} \subset \mathbb{B}$ называется слабо сходящейся к некоторому элементу $u \in \mathbb{B}$, если для любого элемента $f \in \mathbb{B}^*$ имеем

$$\langle f, u_n \rangle \to \langle f, u \rangle.$$

Слабую сходимость последовательности $\{u_n\}\subset \mathbb{B}$ к некоторому элементу $u\in \mathbb{B}$ будем обозначать следующим образом:

$$u_n \rightharpoonup u$$
 слабо в \mathbb{B} .

Теперь мы можем ввести понятие *-слабой сходимости в пространстве \mathbb{B}^* . Дадим следующее определение:

Определение 3. Последовательность элементов $\{f_n\} \subset \mathbb{B}^*$ *-слабо сходится к некоторому элементу $f \in \mathbb{B}^*$, если для любого $u \in \mathbb{B}$ имеет место предельное равенство

$$|\langle f_n, u \rangle - \langle f, u \rangle| \to 0$$
 при $n \to +\infty$. (4)

Обозначается *-слабая сходимость следующим образом:

$$f_n \stackrel{*}{\rightharpoonup} f \quad *$$
 —слабо в \mathbb{B}^* (5)

Дважды сопряженное пространство

Дадим определение.

Определение 4. Через \mathbb{B}^{**} обозначено пространство линейных и непрерывных функционалов над пространством \mathbb{B}^* , относительно нормы

$$||v||_{**} \equiv \sup_{||f||_*=1} |\langle v, f \rangle_*|$$
 (6)

и в силу леммы 1 имеет место полезное неравенство

$$|\langle v, f \rangle_*| \le ||v||_{**} ||f||_*,$$
 (7)

где $\langle v,f\rangle_*$ — это скобки двойственностей между \mathbb{B}^* и \mathbb{B}^{**} .

Дважды сопряженное пространство

Теперь понятна и связь скобок двойственности:

$$\langle \cdot, \cdot \rangle$$
 и $\langle \cdot, \cdot \rangle_*$.

Действительно, имеем

$$\langle u,f \rangle_* = \langle f,u \rangle$$
 для всех $u \in \mathbb{B} \subset \mathbb{B}^{**}$ и $f \in \mathbb{B}^*.$

Поэтому в одном частном, но важном случае, когда $\mathbb B$ можно отождествить со всем пространством $\mathbb B^{**},$ получаем

$$\langle u,f \rangle_* = \langle f,u \rangle$$
 для всех $u \in \mathbb{B} = \mathbb{B}^{**}$ и $f \in \mathbb{B}^*.$ (8)

Свойства слабой и *-слабой сходимостей

Справедлива следующая теорема:

Теорема

Справедливы следующие два утверждения:

(i) Всякая слабо сходящаяся последовательность $\{u_n\}$ из банахова пространства $\mathbb B$ ограничена, причем

если
$$u_n \to u_\infty$$
 при $n \to +\infty,$ то $\|u_\infty\| \leqslant \liminf_{n \to +\infty} \|u_n\|$

(ii) Всякая *-слабо сходящаяся последовательность $\{f_n\}$ из банахова пространства \mathbb{B}^* ограничена, причем

если
$$f_n \stackrel{*}{\rightharpoonup} f_\infty$$
 при $n \to +\infty,$ то $\|f_\infty\|_* \leqslant \liminf_{n \to +\infty} \|f_n\|_*.$

Рефлексивность и сепарабельность

Определение 5. Банахово пространство \mathbb{B} , которое можно отождествить со своим дважды сопряженным пространством \mathbb{B}^{**} , называется рефлексивным.

Определение 6. Банахово пространство $\mathbb B$ называется сепарабельным если в этом пространстве существует счетное всюду в $\mathbb B$ плотное множество $\mathbb M$, т. е. если любой элемент $u \in \mathbb B$ можно приблизить с любой наперед заданной точностью элементом из множества $\mathbb M \subset \mathbb B$.

Приведем следующую полезную лемму.

Лемма

Если сепарабельно банахово пространство $\mathbb{B}^*,$ то сепарабельно и нормированное пространство $\mathbb{B}.$

Критерий слабой сходимости

Теорема

Пусть $\{u_n\}$ — ограниченная по норме последовательность элементов рефлексивного банахова пространства $\mathbb B$. Тогда из $\{u_n\}$ можно выделить слабо сходящуюся в $\mathbb B$ подпоследовательность $\{u_{n_n}\}$:

 $u_{n_n} \rightharpoonup u$ слабо в \mathbb{B} при $n \to +\infty$.

Критерий *-слабой сходимости

Теперь мы можем получить аналогичный результат в случае пространства \mathbb{B}^* .

Теорема

Пусть \mathbb{B} — есть сепарабельное банахово пространство и $\{f_n\}$ ограниченная по норме последовательность элементов банахова пространства \mathbb{B}^* . Тогда из $\{f_n\}$ можно выделить *-слабо сходящуюся в \mathbb{B}^* подпоследовательность $\{f_{n_n}\}$:

$$f_{n_n} \stackrel{*}{\rightharpoonup} f \quad *-$$
слабо в \mathbb{B}^* при $n \to +\infty$.

Равномерно выпуклые банаховы пространства

Дадим определение. Определение 7. Пространство $\mathbb B$ называется равномерно выпуклым, если для любого $\varepsilon>0$ существует $\delta(\varepsilon)>0$ такое, что из неравенств $\|u\|\leqslant 1,\ \|v\|\leqslant 1$ и $\|u-v\|\geqslant \varepsilon>0$ следует

$$||u+v|| \leqslant 2(1-\delta(\varepsilon)). \tag{9}$$

Теперь важное утверждение.

Теорема

Всякое равномерно выпуклое банахово пространство \mathbb{B} рефлексивно.

Критерий сильной сходимости

Теорема

Если $\mathbb B$ — это равномерно выпуклое банахово пространство, то из того условия, что

$$u_n \rightharpoonup u$$
 слабо в \mathbb{B} при $n \to +\infty$,

И

$$||u_n|| \to ||u||$$

вытекает, что

$$u_n \to u$$
 сильно в $\mathbb B$ при $n \to +\infty$.

Доказательство этого критерия

Без ограничения общности можно считать, что $\|u\|=1$ и $\|u_n\|
eq 0$. Введем следующее обозначение:

$$v_n = \frac{u_n}{\|u_n\|}.$$

Ясно, что $\|v_n\|=1$ и $v_n\rightharpoonup u$ при $n\to +\infty$. Теперь возьмем $\varepsilon_n=\|v_n-u\|$, тогда по определению 7 найдется такая неубывающая функция $\delta(\varepsilon)$ и $\delta(0)=0$, что

$$||v_n + u|| \le 2 (1 - \delta (||v_n - u||)).$$
 (10)

Поскольку в силу теоремы Мильмана банахово пространство ${\mathbb B}$ рефлексивно, поэтому имеем

$$||v_{n} + u|| = ||v_{n} + u||_{**} = \sup_{||f||_{*} = 1} |\langle v_{n} + u, f \rangle_{*}| =$$

$$= \sup_{||f||_{*} = 1} |\langle f, v_{n} + u \rangle| \ge |\langle f, v_{n} + u \rangle| \quad (11)$$

Доказательство этого критерия

Переходя к нижнему пределу в неравенстве (10) с учетом неравенства (11), получим следующее неравенство:

$$2 \liminf_{n \to +\infty} (1 - \delta(\|v_n - u\|)) \geqslant \liminf_{n \to +\infty} |\langle f, v_n + u \rangle| = 2 |\langle f, u \rangle|,$$
(12)

поскольку $v_n \rightharpoonup u$ слабо в $\mathbb B$. Левая часть неравенства (12) не зависит от $f \in \mathbb B^*$, поэтому можно перейти к supremum по всем $f \in \mathbb B^*$: $\|f\|_* = 1$ и получить неравенство

$$2 \liminf_{n \to +\infty} (1 - \delta(\|v_n - u\|)) \geqslant 2\|u\|_{**} = 2\|u\| = 2.$$

Которое возможно только в том случае, когда

$$\lim_{n \to +\infty} ||v_n - u|| = 0.$$

Отсюда получаем, что

$$u_n=\|u_n\|v_n o u$$
 сильно в $\,\mathbb B\,$ при $n o +\infty,$ поскольку $\|u_n\| o \|u\|=1.$

Пример — пространства Лебега. Определения.

Теперь мы проиллюстрируем полученные в этой лекции общие результаты на примере пространств Лебега. Прежде всего дадим определения сильной, слабой и *-слабой сходимостей для пространств $L^p(\Omega)$, где Ω область эвклидова пространства \mathbb{R}^N , а $p\in[1,+\infty]$. Итак, дадим определения.

Определение 8. Последовательность $\{u_n\} \subset L^p(\Omega)$ называется сильно сходящейся к элементу $u \in L^p(\Omega)$ при $p \in [1, +\infty]$, если имеет место следующее предельное равенство:

$$\lim_{n \to +\infty} ||u_n - u||_p = \left(\int_{\Omega} |u_n - u|^p dx \right)^{1/p} = 0.$$

Пример — пространства Лебега. Определения

Определение 9. Последовательность $\{u_n\}\subset L^p(\Omega)$ называется слабо сходящейся к элементу $u\in L^p(\Omega)$ при $p\in [1,+\infty),$ если имеет место следующее предельное равенство:

$$\lim_{n \to +\infty} \langle f, u_n
angle_p = \langle f, u
angle_p$$
 для всех $f \in (L^p(\Omega))^*$,

где $\langle\cdot,\cdot\rangle$ — это скобки двойственности между банаховыми пространствами $L^p(\Omega)$ и $(L^p(\Omega))^*$ при $p\in [1,+\infty)$.

Пример — пространства Лебега. Определения

Определение 10. Последовательность $\{f_n\} \subset L^\infty(\Omega)$ называется *-слабо сходящейся к функции $f \in L^\infty(\Omega)$, если для всех $u \in L^1(\Omega)$ имеет место следующее предельное равенство:

$$\lim_n \langle f_n, u \rangle_\infty = \langle f, u \rangle_\infty$$
 для всех $u \in L^1(\Omega),$

где $\langle\cdot,\cdot\rangle_{\infty}$ — это скобки двойственности между банаховыми пространствами $L^{\infty}(\Omega)$ и $L^{1}(\Omega)$.

Пример — пространства Лебега. Сопряженные пространства.

Заметим, что в определении 10 фигурирует пространство $(L^p(\Omega))^*$ при $p\in [1,+\infty)$. Оказывается справедлива следующая теорема о явном выражении этого банахова пространства.

Теорема

Банахово пространство $(L^p(\Omega))^*$ при $p\in (1,+\infty)$ совпадает с банаховым пространством $L^q(\Omega)$ при q=p/(p-1), а в случае p=1 банахово пространство $\left(L^1(\Omega)\right)^*$ совпадает с пространством $L^\infty(\Omega)$.

Пример — пространства Лебега. Свойства сходимостей.

Теорема

Справедливы следующие два утверждения:

(i) Всякая слабо сходящаяся последовательность $\{u_n\}$ из банахова пространства $L^p(\Omega)$ при $p\in [1,+\infty)$ ограничена, причем

если
$$u_n \rightharpoonup u_\infty$$
 при $n \to +\infty,$ то $\|u_\infty\| \leqslant \liminf_{n \to +\infty} \|u_n\|$

(ii) Всякая *-слабо сходящаяся последовательность $\{f_n\}$ из банахова пространства $L^\infty(\Omega)$ ограничена, причем

если
$$f_n \stackrel{*}{\rightharpoonup} f_\infty$$
 при $n \to +\infty,$ то $\|f_\infty\|_* \leqslant \liminf_{n \to +\infty} \|f_n\|_*.$

Пример — пространства Лебега. Критерий слабой сходимости.

Теорема

Пусть $\{u_n\}$ — ограниченная по норме последовательность элементов рефлексивного банахова пространства $L^p(\Omega)$ при $p\in (1,+\infty)$. Тогда из $\{u_n\}$ можно выделить слабо сходящуюся в $L^p(\Omega)$ подпоследовательность $\{u_{n_n}\}$:

$$u_{n_n} \rightharpoonup u$$
 слабо в $L^p(\Omega)$ при $n \to +\infty$.

Пример — пространства Лебега. Критерий *-слабой сходимости.

Теорема

Пусть $\{f_n\}$ — ограниченная по норме последовательность элементов банахова пространства $L^\infty(\Omega)$. Тогда из $\{f_n\}$ можно выделить *-слабо сходящуюся в $L^\infty(\Omega)$ подпоследовательность $\{f_{n_n}\}$:

$$f_{n_n} \stackrel{*}{\rightharpoonup} f \quad *-$$
слабо в $L^{\infty}(\Omega)$ при $n \to +\infty$.

Пример — пространства Лебега. Равномерная выпуклость.

Теперь рассмотрим вопрос о равномерной выпуклости пространств Лебега $L^p(\Omega)$ при $p\in (1,+\infty)$. Действительно, имеет место утверждение:

Теорема

Банаховы пространства $L^p(\Omega)$ равномерно выпуклы при $p \in (1, +\infty)$.

Пример — пространства Лебега. Критерий сильной сходимости.

Таким образом, в силу общего результата приходим к следующему утверждению:

Теорема

Из того условия, что при $p\in(1,+\infty)$

$$u_n \rightharpoonup u$$
 слабо в $L^p(\Omega)$ при $n \to +\infty$,

И

$$||u_n||_p \to ||u||_p$$

вытекает, что

$$u_n \to u$$
 сильно в $L^p(\Omega)$ при $n \to +\infty$.