D.1. Решить однородную систему линейных уравнений, заданную своей основной матрицей.

(a)
$$\begin{pmatrix} 4 & 3 & 0 & 6 & -1 \\ 3 & 2 & 1 & 5 & 0 \\ 2 & 1 & 2 & 4 & 1 \\ 1 & 4 & -13 & -5 & -10 \end{pmatrix}$$
; (6)
$$\begin{pmatrix} 3 & 4 & 0 & -1 & 6 \\ 2 & 3 & 1 & 0 & 5 \\ 1 & 2 & 2 & 1 & 4 \\ 4 & 1 & -13 & -10 & -5 \end{pmatrix}$$
.

D.2. Решить неоднородную систему линейных уравнений, заданную своей расширенной матрицей.

(a)
$$\begin{pmatrix} 4 & 3 & 0 & 6 & -1 \\ 3 & 2 & 1 & 5 & 0 \\ 2 & 1 & 2 & 4 & 1 \\ 1 & 4 & -13 & -5 & -10 \end{pmatrix}$$
; (6)
$$\begin{pmatrix} 3 & 4 & 0 & -1 & 6 \\ 2 & 3 & 1 & 0 & 5 \\ 1 & 2 & 2 & 1 & 4 \\ 4 & 1 & -13 & -10 & -5 \end{pmatrix}$$
.

D.3. Найти базис в линейной оболочке заданных матриц и разложить каждую из матриц по найденному базису.

(a)
$$\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 2 & -13 \end{pmatrix}$, $\begin{pmatrix} 6 & 5 \\ 4 & 5 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 1 & 10 \end{pmatrix}$;

(6)
$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$
, $\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 2 & 13 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 1 & 10 \end{pmatrix}$, $\begin{pmatrix} 6 & 5 \\ 4 & 5 \end{pmatrix}$.

D.4.В пространстве \mathbb{R}^3 заданы два подпространства: P — линейная оболочка столбцов и Q — решение однородной системы. Найти базис в сумме P+Q заданных подпространств.

$$P = L\left(\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}\right), Q = \{x^1 - 3x^2 + 2x^3 = 0\}.$$

D.5. В пространстве \mathbb{R}^3 заданы два подпространства: P — линейная оболочка столбцов и Q — решение однородной системы. Найти базис в пересечении $P\cap Q$ заданных подпространств.

$$P = L\left(\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}\right), Q = \{x^1 + x^2 - 2x^3 = 0\}.$$

D.6. Записать матрицу перехода от базиса (e_1, e_2) пространства \mathbb{R}^2 к базису $(e_{1'}, e_{2'})$. Задан столбец координат X вектора x в базисе (e_1, e_2) . Найти координаты вектора x в базисе $(e_{1'}, e_{2'})$.

$$e_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, e_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}, e_{1'} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, e_{2'} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, X = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

D.7. Матрица перехода от базиса (e_1, e_2) пространства \mathbb{R}^2 к базису $(e_{1'}, e_{2'})$

имеет вид
$$C = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$
. Написать выражение требуемой координаты

заданного тензора в базисе $(e_{1'}, e_{2'})$ через координаты a_k^{ij} этого тензора в базисе (e_1, e_2) .

(a)
$$a_{2'}^{1'1'}$$
; (б) $a_{2'}^{1'2'}$; (в) $a_{1'}^{1'2'}$; (г) $a_{1'}^{2'2'}$; (д) $a_{2'}^{2'1'}$.

- D.8. Составить матрицу оператора ортогонального проектирования евклидова пространства \mathbb{R}^3 в стандартном ортонормированном базисе (e_1, e_2, e_2)
 - (a) на линейную оболочку вектора $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_2$;
- (б) на ортогональное дополнение линейной оболочки вектора $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_2$.
- D.9. Найти ядро и образ линейного оператора $A:\mathbb{R}^5 \to \mathbb{R}^4$, заданного своей матрицей A в некоторой паре базисов:

(a)
$$A = \begin{pmatrix} 4 & 3 & 0 & 6 & -1 \\ 3 & 2 & 1 & 5 & 0 \\ 2 & 1 & 2 & 4 & 1 \\ 1 & 4 & -13 & -5 & -10 \end{pmatrix}$$
; (6) $A = \begin{pmatrix} 3 & 4 & 0 & -1 & 6 \\ 2 & 3 & 1 & 0 & 5 \\ 1 & 2 & 2 & 1 & 4 \\ 4 & 1 & -13 & -10 & -5 \end{pmatrix}$.

D.10. Записать матрицу перехода от базиса (e_1, e_2) пространства \mathbb{R}^2 к базису $(e_{1'}, e_{2'})$. Задана матрица A линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в базисе (e_1, e_2) . Найти матрицу A' оператора A в базисе $(e_{1'}, e_{2'})$.

$$e_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, e_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}, e_{1'} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, e_{2'} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

D.11. Найти собственные значения и собственные векторы линейного оператора $A: \mathbb{R}^3 \to \mathbb{R}^3$, заданного своей матрицей в некотором базисе (e_1, e_2, e_3) .

(a)
$$\begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
; (6) $\begin{pmatrix} 4 & 1 & 1 \\ 2 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix}$; (B) $\begin{pmatrix} 4 & -4 & 2 \\ 2 & -1 & 1 \\ -4 & 4 & -2 \end{pmatrix}$.

D.11. В пространстве $\mathbb{R}^{2\times 2}$ квадратных матриц размера 2×2 задан линейный оператор $A:\mathbb{R}^{2\times 2}\to\mathbb{R}^{2\times 2}$, действующий по формуле

$$AX = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \! X + X \! \left(egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight) \! , \, X \in \mathbb{R}^{2 imes 2} .$$
 Запишите матрицу оператора A в

стандартном базисе пространства $\mathbb{R}^{2\times 2}$. Найдите собственные значения и собственные векторы оператора A.

- D.12. (a) Найти все инвариантные подпространства линейного оператора $A:V \to V$ проектирования на подпространство $P \subset V$ вдоль подпространства $Q \subset V$.
- (а) Найти все инвариантные подпространства линейного оператора транспонирования $A: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, действующего в пространстве квадратных матриц размером $n \times n$: $A(X) = X^T$, $X \in \mathbb{R}^{n \times n}$.
- D.13. В пространстве V многочленов x(t) степени ≤ 2 задана билинейная форма $B(x,y) = \int_0^1 x(t)y(t)dt$. Составить матрицу этой билинейной формы в стандартном базисе пространства V.
- D.14. Записать матрицу перехода от базиса (e_1, e_2) пространства \mathbb{R}^2 к базису $(e_{1'}, e_{2'})$. Задана матрица B билинейной формы $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ в базисе (e_1, e_2) . Найти матрицу B' билинейной формы B в базисе $(e_{1'}, e_{2'})$.

$$e_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, e_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}, e_{1'} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, e_{2'} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

D.15. Привести заданную симметричную билинейную (квадратичную) форму к диагональному виду методом Лагранжа:

(a)
$$B(x,y) = x^1y^1 + 4x^2y^2 + 9x^3y^3 + 2x^1y^2 + 2x^2y^1 - 3x^1y^3 - 3x^3y^1 - 6x^2y^3 - 6x^3y^2;$$

(6)
$$\mathbf{B}(\mathbf{x}, \mathbf{y}) = x^1 y^1 + 5x^2 y^2 + 10x^3 y^3 + 2x^1 y^2 + 2x^2 y^1 - 3x^1 y^3 - 3x^3 y^1 - 5x^2 y^3 - 5x^3 y^2$$
.

D.16. Привести заданную симметричную билинейную (квадратичную) форму к диагональному виду методом ортогонального преобразования.

(a)
$$B(x,y) = x^1y^1 + x^2y^2 + x^3y^3 + x^1y^2 + x^2y^1 + x^1y^3 + x^3y^1 + x^2y^3 + x^3y^2;$$

(6)
$$\mathbf{B}(\mathbf{x}, \mathbf{y}) = 2x^1y^1 + 2x^2y^2 + 2x^3y^3 - x^1y^2 - x^2y^1 - x^1y^3 - x^3y^1 - x^2y^3 - x^3y^2$$
.

D.17. Применить к заданной системе векторов процесс ортогонализации

Грама Шмидта.

$$\begin{array}{c}
 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix};$$

(6)
$$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

D.18. Для заданной матрицы A найти e^{tA} (не матрицы A, а матрицы tA).

(a)
$$\begin{pmatrix} 6 & -15 \\ 2 & -5 \end{pmatrix}$$
; (6) $\begin{pmatrix} -5 & 15 \\ -2 & 6 \end{pmatrix}$; (8) $\begin{pmatrix} 11 & -30 \\ 4 & -11 \end{pmatrix}$; (7) $\begin{pmatrix} 11 & 20 \\ -6 & -11 \end{pmatrix}$.

D.19. Построить ортонормированный базис, состоящий из собственных векторов заданного самосопряженного оператора.

(a)
$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
; (6) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$; (B) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.

- D.20. В пространстве V многочленов x(t) с вещественными коэффициентами степени ≤ 3 скалярное произведение задано формулой $(x,y)=\int_0^1 x(t)y(t)dt$. Найти ортогональную проекцию g(t) вектора $x(t)=1+t+t^2+t^3$ на подпространство многочленов степени ≤ 1 и расстояние от этого вектора до его ортогональной проекции.
- D.21. Привести две заданные квадратичные формы к диагональному виду одновременным преобразованием.

(a)
$$Q_1(\mathbf{x}) = (x^1)^2 + 2x^1x^2 + 3(x^2)^2$$
, $Q_2(\mathbf{x}) = 4(x^1)^2 + 16x^1x^2 + 6(x^2)^2$.

(6)
$$Q_1(\mathbf{x}) = (x^1)^2 - 2x^1x^2 + (x^2)^2$$
, $Q_2(\mathbf{x}) = 17(x^1)^2 + 8x^1x^2 + (x^2)^2$.