Экстремальные задачи
В курсе изложены основные понятия выпуклого программирования с приложениями к теории некорректных задач. Изучены свойства и рассмотрен вопрос о разрешимости задачи выпуклого программирования в гильбертовом (и рефлексивном банаховом) пространстве. Сформулированы необходимые и достаточные условия выпуклости и сильной выпуклости дифференцируемых по Фреше функционалов. Рассмотрены наиболее популярные методы минимизации (методы скорейшего спуска, Ньютона, Ньютона-Гаусса, сопряженных градиентов, проекции сопряженных градиентов, условного градиента и др.). Даны некоторые основные понятия и результаты Тихоновской теории линейных и нелинейных некорректных задач. Изучены численные методы регуляризации некорректных задач, основанные на методах минимизации невязки и функционала А.Н. Тихонова и методе квазирешений В.К. Иванова.
Лекторы
Отчётность
экзамен
Содержание курса
- Постановка задач математического программирования. Задачи первого и второго типа. Разрешимость задач. Теорема Вейерштрасса. Выпуклые, строго выпуклые и сильно выпуклые функционалы. Разрешимость задачи выпуклого программирования в гильбертовом пространстве. Существование экстремума сильно выпуклого функционала на выпуклом замкнутом неограниченном множестве. Квадратичное и линейное программирование.
- Необходимые и достаточные условия экстремума дифференцируемого функционала. Необходимые и достаточные условия выпуклости и сильной выпуклости дифференцируемых функционалов. Применение к задаче псевдообращения.
- Численные методы отыскания минимума выпуклых дифференцируемых функционалов. Задача без ограничений. Метод скорейшего спуска. Методы сопряженных направлений. Метод сопряженных градиентов. Метод Ньютона и его модификации.
- Численные методы отыскания минимума выпуклых дифференцируемых функционалов при наличии ограничений. Метод условного градиента. Метод проекции сопряженных градиентов.
- Некорректно поставленные задачи. Понятие регуляризирующего алгоритма. Линейное операторное уравнение первого рода как пример некорректной задачи.
- Понятие квазирешения. Существование квазирешения. Примеры компактов. Численные методы отыскания квазирешений линейных некорректных задач на множествах монотонных и выпуклых функций. Оценка погрешности.
- Некорректные задачи при условии истокообразной представимости решения. Метод расширяющихся компактов и апостериорная оценка погрешности.
- Регуляризирующий алгоритм, основанный на минимизации функционала А.Н.Тихонова и обобщенном принципе невязки выбора параметра регуляризации. Численные методы. Эквивалентность обобщенного принципа и обобщенного метода невязки.
- Нелинейные некорректные задачи. Регуляризирующие алгоритмы их решения. Кусочно-равномерная регуляризации. Метод минимальной псевдообратной матрицы.
- Применение регуляризирующих алгоритмов к решению обратных задач математической физики.
Дополнительная литература
- Ф.П. Васильев. Численные методы решения экстремальных задач. М.: Наука, 1980.
- Ф.П. Васильев. Методы решения экстремальных задач. М.: Наука, 1981.
- Б.Н. Пшеничный, Ю.М. Данилин. Численные методы в экстремальных задачах. М.: Наука, 1975.
- А.Н. Тихонов, А.В. Гончарский, В.В. Степанов, А.Г. Ягола. Численные методы решения некорректных задач. М.: Наука, 1990.
- А.Н. Тихонов, А.С. Леонов, А.Г. Ягола. Нелинейные некорректные задачи. М.: Наука, 1995.